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Protection of children from vaccine preventable diseases, such as measles is 
among primary goal for health worker. Measles is a highly contagious disease 
that can spread in a population depending on the number of peoples 
susceptible or infected and also depending on their dynamics in the 
community. The model monitors the temporal dynamics of a childhood 
disease in the presence of preventive vaccine. We presented a nonlinear time 
fractional model of measles in order to understand the outbreaks of this 
epidemic disease. The Caputo fractional derivative operator of order 𝛼 ∈
(0,1] is employed to obtain the system of fractional differential equations. 
The numerical solution of the time fractional model has been procured by 
employing Laplace Adomian decomposition method (LADM), qualitative and 
sensitivity analysis of the model was performed. Qualitative results shows 
that the model has endemic equilibrium which locally asymptotically stable 
for 𝑅0 > 1 and otherwise unstable. The convergence analysis and non-
negative solutions are verified for the proposed scheme. Simulation of 
different epidemiological classes at the effect of fractional parameter 𝛼 
revealed that most individuals undergoing treatment join the recovered 
class. This method proves to be very efficient techniques for solving epidemic 
model to control infectious disease. 
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1. Introduction 

* Epidemiological study plays an important role to 
understand the impact of infectious disease in a 
community. In mathematical modeling, we 
investigate models by model building, perform 
estimation of parameters, check sensitivity of models 
by varying parameters and compute their numerical 
simulations (Panum, 1988). The research of this kind 
helps to understand the ratio of disease spread in the 
population and to control their parameters (Grenfell, 
1992; Abubakar et al., 2012). These types of diseased 
models are often called infectious diseases (i.e., the 
disease which transferred from one person to 
another person). Measles, rubella, chicken pox, 
mumps, aids and gonorrhea syphilis are the 
examples of infectious disease (WHO, 2011). 
Rubeola virus is highly infectious illness which is 
also known as morbilli or measles. The virus can be 
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found in the mucus of the throat, nose of an infected 
adult and child. Measles symptoms caused by 
Rubeola virus always included fever, coryza (runny 
nose), conjunctivitis and at least one of the three Cs-
cough. Symptoms appear after the initial infection 
about 9-11 days (Ochoche and Gweryina, 2014). 
Complications of measles are fairly common but the 
patients have weak immune system are more likely 
to be worse such as those with HIV/AIDS or 
leukemia and those with vitamin deficiency. Healthy 
children over the age of 5 are less likely to have 
complications than adults over the age of 20. It is the 
first and worst eruptive fever occurs during 
childhood (Hethcote, 2000; Murray, 2002). It 
produces eye infection, bronchitis, laryngitis and 
vomiting, bronchitis is inflammation of the inner 
walls of airways and laryngitis is inflammation of the 
voice box.  

Since in recent years fractional calculus has 
attracted great attentions from researchers and 
different aspects of the said subject is under 
consideration for research. This is due to the fact 
that fractional derivative is important tool to explain 
the dynamical behavior of various physical systems. 
The strength of this differential operator is their 
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nonlocal characteristics which do not exist in the 
integer order differential operators. The 
distinguished features of fractional differential 
equations are that it outlines memory and 
transmitted properties of numerous mathematical 
models. As a fact, that fractional order models are 
more realistic and practical than the classical integer 
order models. Fractional order derivative produces 
greater degree of freedom in these models. Arbitrary 
order derivatives are powerful tools for the 
discretion of the dynamical behavior of various 
biomaterial and systems. The most iterating feature 
of these models is their global (nonlocal) 
characteristics which do not exist in the classical 
order models (Haq et al., 2017).  

Laplace transform method is a useful technique in 
different field of biological science, engineering and 
applied mathematics. The coupling of ADM and 
Laplace transform leads to a powerful method 
known as Laplace Adomain decomposition method. 
With the help of Laplace transform, we convert a 
differential equation to an algebraic equation and the 
nonlinear terms are decomposed in terms of 
Adomain polynomials. The given numerical 
technique works powerfully for a system of 
deterministic as well as stochastic differential 
equations. More unambiguously, it can be used for 
classical as well as fractional order system of linear 
and nonlinear ordinary and partial differential 
equations. In this method, no perturbation or 
liberalization is required. Further it has no need of 
pre-defined step size like RK4. Also, this method 
does not depend upon on a parameter like needed 
for homotopy perturbation method (HPM) and 
homotopy analysis method (HAM). Although the 
solutions obtained via this method are the same as 
obtained by ADM, for detail see (Jafari et al., 2011a; 
2011b; Johnston et al., 2016). It is to be noted that 
LADM is powerful than standard ADM method (Haq 
et al., 2017). 

2. Material and method 

2.1. Mathematical model 

Kermack and McKendrick (1927) are inventor of 
the diseases models and played an important role in 
mathematical epidemiology to describe the 
transmission dynamics of measles formulate a 
deterministic and compartmental mathematical 
model. The population is consistently fraternization 
and replicates the demography of a typical emerging 
country, as it investigates an exponentially 
increasing dynamics. The total population (N) is 
divided into three class’s s, i and r represented as 
susceptible, infected and recovered population 
respectively to describe in equations of the model 
(Akinboro et al., 2014).  

 

 
𝑑𝑠

𝑑𝑡
= 𝜇𝑁 − 𝛽𝑠(𝑡)𝑖(𝑡) − 𝜇𝑠(𝑡)                                    (1) 

𝑑𝑖

𝑑𝑡
= 𝛽𝑠(𝑡)𝑖(𝑡) − (𝛾 + 𝜇)𝑖(𝑡)                    (2) 

𝑑𝑟

𝑑𝑡
= 𝛾𝑖(𝑡) − 𝜇𝑟(𝑡)                     (3) 

where 𝜇 is per capita removal rate, 𝛽 is transitivity, 𝛾 
is per capita recovery rate. Since 𝜇, 𝛽 and 𝛾 are 
interpreted rates, their ranges are 0 ≤ 𝜇 ≤ 1, 0 ≤
𝛽 ≤ 1 and 0 ≤ 𝛾 ≤ 1 (Podlubny, 1999). 

The fractional order extension of this model has 
been first studied in (Podlubny, 1999; Arqub and El-
Ajou, 2013). The aim of using fractional system of 
differential equations (FDEs) is naturally related to 
systems with memory effects which exist in most 
biological system that shows the realistic biphasic 
decline behavior of infection or diseases but at a 
slower rate. The new system is fractional differential 
equations (FDEs) which are described as follows. 
 
𝐷𝛼1𝑠(𝑡) = 𝜇𝑁 − 𝛽𝑠(𝑡)𝑖(𝑡) − 𝜇𝑠(𝑡)                                          (4) 
𝐷𝛼2𝑖(𝑡) = 𝛽𝑠(𝑡)𝑖(𝑡) − (𝛾 + 𝜇)𝑖(𝑡)                   (5) 
𝐷𝛼3𝑟(𝑡) = 𝛾𝑖(𝑡) − 𝜇𝑟(𝑡)                    (6) 
 

subject to initial conditions 
 
𝑠(0) = 𝑛1, 𝑖(0) = 𝑛2, 𝑟(0) = 𝑛3                   (7) 
 

the initial conditions must satisfied 𝑁 = 𝑠 + 𝑖 + 𝑟 or 
𝑁 = 𝑛1 + 𝑛2 + 𝑛3. 

2.2. Preliminaries 

In this section, we give some fundamental results 
and definitions from fractional calculus. For detailed 
over view of the topic readers are referred to (Haq et 
al., 2017; Jafari et al., 2011a; 2011b; Johnston et al., 
2016). 

 
Definition 1: The Riemann-liouville fractional 

integration of order   is defined as 
 

(𝐽𝑡0

𝛼 𝑓)(𝑡) =
1

Γ(α)
∫ (𝑡 − 𝑠)𝛼−1𝛼

𝑡0
𝑓(𝑠)𝑑𝑠, 𝛼 > 0, 𝑡 > 𝑡0  

(𝐽𝑡0

𝛼 𝑓)(𝑡) = 𝑓(𝑡)  

 

The Riemann-Liouville derivative has certain 
disadvantages such that the fractional derivative of a 
constant is not zero. Therefore, we will make use of 
Caputo's definition owing to its convenience for 
initial conditions of the fractional differential 
equations. 

 
Definition 2: The Riemann-liouville fractional 
integration of order 𝛼 is defined as 
 
𝐷𝛼𝑓(𝑡) = 𝐷𝑛(𝐽𝑛−𝛼𝑓(𝑡)),  

𝐷∗
𝛼𝑓(𝑡) = 𝐽𝑛−𝛼(𝐷𝑛𝑓(𝑡))  

 
where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑓 is the given function, 
It is known that (𝐽𝑡0

𝛼 𝑓)(𝑡) → 𝑓(𝑡) as 𝛼 → 1. 

 
Definition 3: The definitions of Laplace transform of 
Caputo's derivative and Mittag-Leffler function in 
two arguments is written as 
 
𝐿{𝐷𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠𝛼−𝑖−1𝑓𝑖(0), 𝑛 − 1 < 𝛼 ≤ 𝑛,𝑛−1

𝑖=0

𝑛 ∈ 𝑁  
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3. Mathematical analysis 

The system is qualitatively analyzed by two ways 
i.e. disease Free Equilibrium and endemic 
Equilibrium. To evaluate the equilibrium point, we 
take 

 
𝐷𝛼1𝑠(𝑡) = 𝐷𝛼2𝑖(𝑡) = 𝐷𝛼3𝑟(𝑡) = 0.                   (8) 

 
Therefore the disease free equilibrium is  

 
𝑃0 = (𝑠, 𝑖, 𝑟) i.e (𝑠, 𝑖, 𝑟) = (𝑁, 0,0) 

 
The Equilibrium which is not disease free i.e., 

Endemic Equilibrium (EE). This state that the 
disease persists in a population and never dies out. 
If  

 
𝑖 ≠ 0  

 
then, 
 

 𝑠 =
𝛾+𝜇

𝛽
, 𝑟 =

𝛽𝛾𝑁−𝛾(𝛾+𝜇)

𝛽𝛾(𝛾+𝜇)
, 𝑟 =

𝛽𝜇𝑁−𝜇(𝛾+𝜇)

𝛽(𝛾+𝜇)
. 

 
Thus the endemic equilibrium state is given as: 
 

(𝑠, 𝑖, 𝑟) = (
𝛾+𝜇

𝛽
,

𝛽𝛾𝑁−𝛾(𝛾+𝜇)

𝛽𝛾(𝛾+𝜇)
,

𝛽𝜇𝑁−𝜇(𝛾+𝜇)

𝛽(𝛾+𝜇)
  )  

 
Theorem 3.1: The disease-free equilibrium 𝑃0 is 
locally asymptotically stable if 𝑅0 < 1 and is unstable 
if  𝑅0 > 1 
 
Theorem 3.2: The endemic equilibrium state  𝐸1 =
(𝑠∗, 𝑖∗, 𝑟∗) of the model (4)-(5) is locally 
asymptotically stable if 𝑅0 > 1, otherwise unstable. 

3.1. Reproductive number 

In this system the threshold result of this 
equilibrium is 𝑅0 > 1, so this is in endemic state. 
Consider the Jacobean matrix as 
 

𝐽 = [

−(𝛽𝑖 + 𝜇) −𝛽𝑠 0

𝛽𝑖 𝛽𝑠 − (𝛾 + 𝜇) 0
0 𝛾 −𝜇

]    

𝐽 = 𝐹 − 𝑉   
 

were 
 

𝐹 = [
−𝛽𝑖 −𝛽𝑠 0
𝛽𝑖 𝛽𝑠 0
0 0 0

]   

 
and 

 

 𝑉 = [

𝜇 0 0
0 (𝛾 + 𝜇) 0
0 −𝛾 𝜇

].   

 

By using the relation |𝐾 − 𝜆𝐼| = 0 where 𝐾 =

𝐹𝑉−1 and got the eigen value 𝜆 =
𝛽𝑁

𝛾+𝜇
 which 

represents the reproductive number 𝑅0 =
𝛽𝑁

𝛾+𝜇
 

3.2. Non negative solution 

Let 𝑅+
3 = {𝑥 ∈ 𝑅3, 𝑥 ≥ 0} and𝑥(𝑡) = (𝑠(𝑡), 𝑖(𝑡),

𝑟(𝑡))𝑇 For its proof, we need to use the followings 
lemma. 

 
Lemma: Let ℎ(𝑥) ∈ 𝐶[𝑎, 𝑏] and  𝐷𝛼ℎ(𝑥) ∈ 𝐶[𝑎, 𝑏]for 
0 < 𝛼 < 1 then, we have 
 

ℎ(𝑠) = ℎ(𝑎) +
1

(𝑎+1)!
𝐷𝛼ℎ(𝜂)(𝑥 − 𝑎)                   (9)  

 
with 0 ≤ 𝜂 ≤ 𝑥 for all 𝑥 ∈ (𝑎, 𝑏]  
 
Theorem 3.3: There is a unique solution for the 
initial value problem given by (4)-(6), and the 
solution remains in 𝑅3, 𝑥 ≥ 0. 
 
Proof: The uniqueness and existence for the solution 
of (4)-(6), in (0, 𝛼) can be obtained. Our aim is to 
show the domain 𝑅3, 𝑥 ≥ 0 is positively invariant. 
Since 
 
𝐷𝛼𝑠|𝑠=0 = 𝜇𝑁 ≥ 0                   (10) 
𝐷𝛼𝑖|𝑖=0 = 0                   (11) 
𝐷𝛼𝑟|𝑟=0 = 𝛾𝑖 ≥ 0.                   (12) 

 
The nonnegative solution satisfied the vector field 
points into 𝑅+

3 .  
 

Theorem 3.4: 𝐸0 is locally asymptotically stable if 
𝑅𝑒(𝜆) < 0. 

 
Proof: For the system (4)-(6) the |𝐽 − 𝜆𝐼| = 0, then 
we get. 
 

|

−(𝛽𝑖 + 𝜇 + 𝜆) −𝛽𝑠 0
𝛽𝑖 𝛽𝑠 − (𝛾 + 𝜇 + 𝜆) 0
0 𝛾 −𝜇 − 𝜆

| = 0           (13) 

(𝛽𝑖 + 𝜇 + 𝜆)[𝛽𝑠 − (𝛾 + 𝜇 + 𝜆)](𝜇 + 𝜆) + 𝛽2𝑠𝑖(𝜇 + 𝜆) = 0.  
 

The equation which is given above is called 
characteristic equation. But recall that EE is given as: 
 

(𝑠, 𝑖, 𝑟) = (
𝛾+𝜇

𝛽
,

𝛽𝛾𝑁−𝛾(𝛾+𝜇)

𝛽𝛾(𝛾+𝜇)
,

𝛽𝜇𝑁−𝜇(𝛾+𝜇)

𝛽(𝛾+𝜇)
  )  

(𝜇 + 𝜆)[(𝛽𝑖 + 𝜇 + 𝜆)(𝛽𝑠 − (𝛾 + 𝜇 + 𝜆)) + 𝛽2𝑠𝑖] = 0.  

 
Either 
 
 (𝜇 + 𝜆) = 0 or [(𝛽𝑖 + 𝜇 + 𝜆)(𝛽𝑠 − (𝛾 + 𝜇 + 𝜆)) + 𝛽2𝑠𝑖] =
0 

𝜆2 = −
𝜇

2
+

√𝜇(4𝛾+9𝜇−4𝛽𝑁)

2
,   𝜆2 = −

𝜇

2
−

√𝜇(4𝛾+9𝜇−4𝛽𝑁)

2
 

 

𝜆𝑖 < 0 or if 𝜆𝑖  is complex with negative real parts 
then system is stable. 

Therefore 𝑅𝑒(𝜆) < 0, since all the parameters are 
non-negative. So 𝐸1 is locally asymptotically stable. 
This proves the proposition. 

3.3. Sensitivity analysis of 𝐑𝟎 

The sensitivity of 𝑅0 is as follows 
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𝜕𝑅0

𝜕𝑁
=

𝛽

𝛾+𝜇
> 0  

𝜕𝑅0

𝜕𝛽
=

𝑁

𝛾+𝜇
> 0  

𝜕𝑅0

𝜕𝜇
= −

𝛽𝑁

(𝛾+𝜇)2
< 0  

𝜕𝑅0

𝜕𝛾
= −

𝛽𝑁

(𝛾+𝜇)2
< 0  

 
It can be seen that 𝑅0 is most sensitive to change 

in parameter, here, 𝑅0 is increasing with 𝑁, 𝛽 and 
decreasing with 𝜇, 𝛾.  

3.4. The Laplace-Adomian decomposition 
method 

Consider the fractional-order epidemic model (4), 
(5) and (6) subject to the initial condition (7). The 
nonlinear term in this model is 𝑠𝑖 and 𝜇, 𝛽, 𝛾 are 
known constants. For 𝛼1 + 𝛼2 + 𝛼3 = 1 the 
fractional order model converts to the classical 
epidemic model. Applying the Laplace transform on 
both sides of (4), (5) and (6), we get 
 
𝐿{𝐷𝛼1𝑠(𝑡)} = 𝜇𝑁𝐿{1} − 𝛽𝐿{𝑠(𝑡)𝑖(𝑡)} − 𝜇𝐿{𝑠(𝑡)}             (14) 
𝐿{𝐷𝛼2𝑖(𝑡)} = 𝛽𝐿{𝑠(𝑡)𝑖(𝑡)} − (𝛾 + 𝜇)𝐿{𝑖(𝑡)}                (15) 
𝐿{𝐷𝛼3𝑟(𝑡)} = 𝛾𝐿{𝑖(𝑡)} − 𝜇𝐿{𝑟(𝑡)}                 (16) 
 

by using the property of Laplace transform, we have 
 
𝑆𝛼1𝐿{𝑠} − 𝑆𝛼1−1𝑠(0) = 𝜇𝑁𝐿{1} − 𝛽𝐿{𝑠(𝑡)𝑖(𝑡)} − 𝜇𝐿{𝑠(𝑡)}  

               (17) 
𝑆𝛼2𝐿{𝑖} − 𝑆𝛼2−1𝑖(0) =  𝛽𝐿{𝑠(𝑡)𝑖(𝑡)} − (𝛾 + 𝜇)𝐿{𝑖(𝑡)}   (18) 
𝑆𝛼3𝐿{𝑟} − 𝑆𝛼3−1𝑟(0) =  𝛾𝐿{𝑖(𝑡)} − 𝜇𝐿{𝑟(𝑡)}                (19) 
𝑆𝛼1𝐿{𝑠} = 𝑆𝛼1−1𝑠(0) + 𝜇𝑁𝐿{1} − 𝛽𝐿{𝑠(𝑡)𝑖(𝑡)} − 𝜇𝐿{𝑠(𝑡)}  
                    (20) 
𝑆𝛼2𝐿{𝑖} = 𝑆𝛼2−1𝑖(0) +  𝛽𝐿{𝑠(𝑡)𝑖(𝑡)} − (𝛾 + 𝜇)𝐿{𝑖(𝑡)}   (21)  
𝑆𝛼3𝐿{𝑟} = 𝑆𝛼3−1𝑟(0) +  𝛾𝐿{𝑖(𝑡)} − 𝜇𝐿{𝑟(𝑡)}                     (22) 
 

by using the initial conditions (7), we get 
 

𝐿{𝑠} =
𝑛1

𝑆
+

𝜇𝑁

𝑆𝛼1+1
−

𝛽

𝑆𝛼1
𝐿{𝑠(𝑡)𝑖(𝑡)} −

𝜇

𝑆𝛼1
𝐿{𝑠(𝑡)}               (23) 

𝐿{𝑖} =
𝑛2

𝑆
+  

𝛽

𝑆𝛼2
𝐿{𝑠(𝑡)𝑖(𝑡)} −

(𝛾+𝜇)

𝑆𝛼2
𝐿{𝑖(𝑡)}                          (24)  

𝐿{𝑟} =
𝑛3

𝑆
+  

𝛾

𝑆𝛼3
𝐿{𝑖(𝑡)} −

𝜇

𝑆𝛼3
𝐿{𝑟(𝑡)}                 (25) 

 

It should be assumed that method gives the 
solution as an infinite series 

 
𝑠 = ∑ 𝑠𝑘

∞
𝑘=0  , 𝑖 = ∑ 𝑖𝑘  , 𝑟 = ∑ 𝑟𝑘

∞
𝑘=0

∞
𝑘=0 .                 (26) 

 
The nonlinearity 𝑠𝑖 can be written as 

 
𝑠𝑖 = ∑ 𝐴𝑘

∞
𝑘=0   

 
where 𝐴𝑘 is called the Adomian polynomials given as 

 

𝐴𝑘 =
1

𝑘!

𝑑𝑘

𝑑𝜆𝑘 [∑ 𝜆𝑗𝑠𝑗
𝑘
𝑗=0 ∑ 𝜆𝑗𝑖𝑗

𝑘
𝑗=0 ]                 (27) 

 
Substitute equations (26) and (27) in (23)-(25), 

we have the followings results 
 

𝐿{𝑠0} =
𝑛1

𝑆
+

𝜇𝑁

𝑆𝛼1+1 , 𝐿{𝑖0} =
𝑛2

𝑆
, 𝐿{𝑟0} =

𝑛3

𝑆
                (28) 

 

Similarly, we have 
 

𝐿{𝑠1} = −
𝛽

𝑆𝛼1
𝐿{𝐴0} −

𝜇

𝑆𝛼1
𝐿{𝑠0} … ,                   𝐿{𝑠𝑘+1} =

−
𝛽

𝑆𝛼1
𝐿{𝐴𝑘} −

𝜇

𝑆𝛼1
𝐿{𝑠𝑘}                  (29) 

𝐿{𝑖1} =  
𝛽

𝑆𝛼2
𝐿{𝐴0} −

(𝛾+𝜇)

𝑆𝛼2
𝐿{𝑖0} … ,                     𝐿{𝑖𝑘+1} =

 
𝛽

𝑆𝛼2
𝐿{𝐴𝑘} −

(𝛾+𝜇)

𝑆𝛼2
𝐿{𝑖𝑘}                  (30)  

𝐿{𝑟1} =  
𝛾

𝑆𝛼3
𝐿{𝑖0)} −

𝜇

𝑆𝛼3
𝐿{𝑟0} … ,                        𝐿{𝑟𝑘+1} =

 
𝛾

𝑆𝛼3
𝐿{𝑖𝑘)} −

𝜇

𝑆𝛼3
𝐿{𝑟𝑘}                  (31) 

 
The purpose of the work is to analysis the 

mathematical behavior of the solution 𝑠(𝑡), 𝑖(𝑡), 𝑟(𝑡) 
for the different values of 𝛼. By taking the inverse 
Laplace transform on both sides of the equation (28), 
we get the values of 𝑠0, 𝑖0, 𝑟0  and used for further 
process. Putting the values of 𝑠0, 𝑖0, 𝑟0 and 𝐴0 into the 
equations (29), (30) and (31), get the values of 
𝑠1, 𝑖1, 𝑟1 similarly we find the remaining term 
𝑠2, 𝑠3,𝑠4 …, 𝑖2, 𝑖3,𝑖4 …, and 𝑟2, 𝑟3,𝑟4 …, in the same 

manners. Solution can be written as 
 
𝑠(𝑡) = 𝑠0 + 𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 …                 (32) 
𝑖(𝑡) = 𝑖0 + 𝑖1 + 𝑖2 + 𝑖3 + 𝑖4 ….                 (33) 
𝑟(𝑡) = 𝑟0 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 ….                 (34) 
 

The values of parameter used in the computation 
are given in the following Table 1. 

 
Table 1: Parameter values of SIR measles model 

Parameter Values Description 
𝑁 1000 Total Population 
𝑛1 990 Initial population of 𝑠(𝑡) 
𝑛2 10 Initial population of 𝑖(𝑡) 
𝑛3 0 Initial population of  𝑟(𝑡) 
𝛾 1 Per capita recovery rate 
𝛽 0.003 Transitivity 
𝜇 0.05 Per capita removal rate 

 

We have computed first three terms of the series 
by using the LADM for the equations (4), (5) and (6) 
as 
 

𝑠0 = 990 +
𝑡𝛼1

𝛼1!
, 𝑖0 = 10, 𝑟0 = 0  

𝑠1 = −19.8
𝑡𝛼1

𝛼1!
− 0.05

𝑡2𝛼1

2𝛼1!
, 𝑖1 = 19.2

𝑡𝛼2

𝛼2!
, 𝑟1 = −10

𝑡𝛼3

𝛼3!
  

𝑠2 = −57.024
𝑡𝛼1+𝛼2

(𝛼1+𝛼2)!
− 0.0576

(𝛼1+𝛼2)!𝑡𝛼1+𝛼2

𝛼1!𝛼2!(2𝛼1+𝛼2)!
+ 1.538

𝑡2𝛼1

2𝛼1!
+

0.004
𝑡3𝛼1

3𝛼1!
 , 

𝑖2 = 36.864
𝑡2𝛼2

2𝛼2!
+ 0.0576

(𝛼1+𝛼2)!𝑡𝛼1+2𝛼2

𝛼1!𝛼2!(𝛼1+2𝛼2)!
− 1.538

𝑡𝛼1+𝛼2

(𝛼1+𝛼2)!
−

0.004
𝑡2𝛼1+𝛼2

(2𝛼1+𝛼2)!
 , 

𝑟2 = 19.2
𝑡𝛼2+𝛼3

(𝛼2+𝛼3)!
− 0.5

𝑡2𝛼3

2𝛼3!
  

 

The solution of the fractional model in series form 
is written as 
 

𝑠(𝑡) = 990 − 18.8
𝑡𝛼1

𝛼1!
− 0.05

𝑡2𝛼1

2𝛼1!
− 57.024

𝑡𝛼1+𝛼2

(𝛼1+𝛼2)!
−

0.0576
(𝛼1+𝛼2)!𝑡𝛼1+𝛼2

𝛼1!𝛼2!(2𝛼1+𝛼2)!
+ 1.538

𝑡2𝛼1

2𝛼1!
+ 0.004

𝑡3𝛼1

3𝛼1!
                  (35) 

𝑖(𝑡) = 10 + 19.2
𝑡𝛼2

𝛼2!
+ 36.864

𝑡2𝛼2

2𝛼2!
+ 0.0576

(𝛼1+𝛼2)!𝑡𝛼1+2𝛼2

𝛼1!𝛼2!(𝛼1+2𝛼2)!
−

1.538
𝑡𝛼1+𝛼2

(𝛼1+𝛼2)!
− 0.004

𝑡2𝛼1+𝛼2

(2𝛼1+𝛼2)!
                  (36) 

𝑟(𝑡) = −10
𝑡𝛼3

𝛼3!
+ 19.2

𝑡𝛼2+𝛼3

(𝛼2+𝛼3)!
− 0.5

𝑡2𝛼3

2𝛼3!
                   (37) 
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In particular, the solution of the model with 
fractional derivatives for 𝛼1 + 𝛼2 + 𝛼3 = 1 is given 
by 
 

𝑠(𝑡) = 990 − 18.6𝑡 − 27.565𝑡2 − 0.01853𝑡3                (38) 
𝑖(𝑡) = 10 + 19.2𝑡 + 17.6𝑡2 + 0.01833𝑡3                (39) 
𝑟(𝑡) = 10𝑡 + 9.35𝑡2                  (40) 

4. Numerical results and discussion 

The numerical results of susceptible, infected and 
recovered population for 𝛼𝑖 = 1 , 𝛼𝑗 = 0.99 , 𝛼𝑘 =

0.95  where 𝑖, 𝑗, 𝑘 = 1, 2, 3 are established in Tables 
2-4 by using LADM. For the reliable investigation, 
evaluation is made for different values of 𝛼. From 
Figs. 1-3, we observe that fractional order SIR 
measles model has more degree of freedom as 
compared to ordinary derivatives. By taking non-
integer values of fractional parameter, remarkable 
responses of the compartments of the proposed 
model are obtained. Another remarkable point to be 
considered that we used small interval of time 
because we have assumed comparatively small 
initial values. For large interval of time, the initial 
values to data are taken large so that the population 
may not be negative. For different values of 𝛼 
solution converges to steady state and gives the 
better convergence by decreasing the fractional 
values of 𝛼.  

4.1. Convergence analysis 

The obtained series solution is rapidly 
convergent and also converges uniformly to the 
exact solution. We use the classical techniques to 
verify the convergence of the series (35), (36) and 
(37) in (Shah et al., 2016). We check the condition of 

convergence of the method by using the idea of the 
following theorem (Abdelrazec and Pelinovsky, 
2011; Naghipour and Manafian, 2015). 
 
Theorem 4.1: Let 𝑌 be a Banach space and 𝐹: 𝑌 → 𝑌 
be a contractive nonlinear operator then there exit 
𝑦, 𝑦′ ∈ 𝑌, ‖𝐹(𝑦) − 𝐹(𝑦′)‖ ≤ 𝑘‖𝑦 − 𝑦′‖, 0 < 𝑘 < 1. 
Then 𝐹 has a unique point 𝑦 such that 𝐹𝑦 = 𝑦, where 
𝑦 = (𝑠, 𝑖, 𝑟). The series given in (35), (36) and (37) 
by using ADM technique is given as: 
 

𝑦𝑛 = 𝑇𝑦𝑛−1, 𝑦𝑛−1 = ∑ 𝑦𝑗 ,    𝑛 = 1,2,3, …𝑛−1
𝑗=1   

 

and suppose that  𝑦0 ∈ 𝐵𝑟(𝑦) where 𝐵𝑟(𝑦) = {𝑦′ ∈
𝑌: ‖𝑦 − 𝑦′‖ < 𝑟} then we get  
 

(i) 𝑦𝑛 ∈ 𝐵𝑟(𝑦) 
(ii) lim

𝑛→∞
𝑦𝑛 = 𝑦 

 

Proof: For (i) by using mathematical induction for 
𝑛 = 1, we obtained 
‖𝑦0 − 𝑦‖ = ‖𝐹(𝑦0) − 𝐹(𝑥)‖ ≤ 𝑘‖𝑦0 − 𝑦‖  

 
suppose that the statement is true for 𝑚 − 1 then, 
 
‖𝑦0 − 𝑦‖ ≤ 𝑘𝑚−1‖𝑦0 − 𝑦‖  

 
we get 
‖𝑦𝑚 − 𝑦‖ = ‖𝐹(𝑦𝑚−1) − 𝐹(𝑥)‖ ≤ 𝑘‖𝑦𝑚−1 − 𝑦‖ ≤
𝑘𝑚‖𝑦0 − 𝑦‖  
‖𝑦𝑚 − 𝑦‖ ≤ 𝑘𝑛‖𝑦0 − 𝑦‖ ≤ 𝑘𝑛𝑟 ≤ 𝑟  

 
which implies that 𝑦𝑛 ∈ 𝐵𝑟(𝑦) 
(ii) Since ‖𝑦𝑚 − 𝑦‖ ≤ 𝑘𝑛‖𝑦0 − 𝑦‖  
 and lim

𝑛→∞
𝑘𝑛 = 0 therefore, we have the  lim

𝑛→∞
‖𝑦𝑛 −

𝑦‖ = 0 ⇒ lim
𝑛→∞

𝑦𝑛 = 𝑦 

 

Table 2: Table of 𝑠(𝑡) at different values of 𝛼 

T 

𝛼1 = 1
𝛼2 = 1
𝛼3 = 1

 
𝛼1 = 0.99
𝛼2 = 0.99
𝛼3 = 0.99

 

𝛼1 = 0.95
𝛼2 = 0.95
𝛼3 = 0.95

 
𝛼1 = 1

𝛼2 = 0.99
𝛼3 = 0.99

 

𝛼1 = 1
𝛼2 = 0.95
𝛼3 = 0.95

 

𝛼1 = 0.99
𝛼2 = 0.99
𝛼3 = 0.95

 

0 990 990 990 990 990 990 
1 943.616 943.541 940.429 943.173 942.105 942.842 
2 841.992 843.622 839.457 841.014 840.014 840.872 
3 685.015 690.814 690.18 683.358 685.781 684.677 
4 472.574 485.419 494.342 471.83 480.415 474.57 
5 204.559 227.625 253.126 204.126 224.574 210.741 

 

Table 3: Table of 𝑖(𝑡) at different values of  𝛼 

T 

𝛼1 = 1
𝛼2 = 1
𝛼3 = 1

 
𝛼1 = 0.99
𝛼2 = 0.99
𝛼3 = 0.99

 
𝛼1 = 0.95
𝛼2 = 0.95
𝛼3 = 0.95

 

𝛼1 = 1
𝛼2 = 0.99
𝛼3 = 0.99

 

𝛼1 = 1
𝛼2 = 0.95
𝛼3 = 0.95

 

𝛼1 = 0.99
𝛼2 = 0.99
𝛼3 = 0.95

 

0 10 10 10 10 10 10 
1 46.8583 47.267 48.9213 47.2682 48.9584 49.267 
2 119.107 119.323 120.059 119.282 120.091 127.213 
3 226.855 225.896 221.803 225.725 221.739 243.505 
4 370.213 366.84 353.14 366.409 352.875 397.965 
5 549.291 542.076 513.378 541.22 512.797 590.492 

 

Table 4: Table of 𝑟(𝑡) at different values of 𝛼 

T 

𝛼1 = 1
𝛼2 = 1
𝛼3 = 1

 
𝛼1 = 0.99
𝛼2 = 0.99
𝛼3 = 0.99

 

𝛼1 = 0.95
𝛼2 = 0.95
𝛼3 = 0.95

 
𝛼1 = 1

𝛼2 = 0.99
𝛼3 = 0.99

 

𝛼1 = 1
𝛼2 = 0.95
𝛼3 = 0.95

 

𝛼1 = 0.99
𝛼2 = 0.99
𝛼3 = 0.95

 

0 0 0 0 0 0 0 
1 19.35 19.565 20.438 19.565 20.438 20.070 
2 57.4 57.514 57.906 57.514 57.906 57.599 
3 114.15 113.645 11.495 113.645 111.495 112.206 
4 189.6 187.823 180.622 187.823 180.622 183.556 
5 283.75 279.952 264.876 279.952 264.876 271.401 
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Fig. 1: Numerical solution for susceptible 𝑠(𝑡) population in a time 𝑡 (year) at 𝛼𝑖 = 1 , 𝛼𝑗 = 0.99 , 𝛼𝑘 = 0.95  where 𝑖, 𝑗, 𝑘 =

1, 2, 3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Numerical solution for infected 𝑖(𝑡) population in a time 𝑡 (year) at 𝛼𝑖 = 1 , 𝛼𝑗 = 0.99 , 𝛼𝑘 = 0.95  where 𝑖, 𝑗, 𝑘 = 1, 2, 3 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Numerical solution for recovered 𝑟(𝑡) population in a time 𝑡 (year) at 𝛼𝑖 = 1 , 𝛼𝑗 = 0.99 , 𝛼𝑘 = 0.95  where 𝑖, 𝑗, 𝑘 =

1, 2, 3 
 



Ahmad et al/International Journal of Advanced and Applied Sciences, 5(1) 2018, Pages: 123-129 

129 
 

 

5. Conclusion 

In this paper, we developed a scheme for 
analytical solution of epidemic fractional SIR model 
of measles by using Laplace Adomian decomposition 
method. The well-known epidemic model namely 
Susceptible-Infected-Recovered (SIR) is considered 
with and without demographic effects. The model 
represents population dynamics during the disease 
as a set of non-linear coupled ordinary differential 
equations. There is no exact solution available in the 
literature for this model up to the best of author’s 
knowledge. It is observed that the infection rate and 
reproductive numbers play a key role for an 
epidemic to occur and the epidemic can be 
controlled by vaccination. It is also observed that to 
eliminate the disease, it is not necessary to vaccinate 
whole of the population. The efficiency and accuracy 
of the proposed scheme is provided by performing 
convergence analysis. The effect of fractional 
parameter on our obtained solutions is presented 
through Tables and graphs. It is worthy to observe 
that fractional derivatives show significant changes 
and memory effects as compared to ordinary 
derivatives. 
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